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In a free-electron laser oscillator, a variation in the electron beam energy leads to a change in the reso-
nant optical frequency. Simulations are used to study the optical response to an electron beam energy
change. A step change in the electron beam energy is used to define a characteristic response time for

changing the optical frequency.

PACS number(s): 41.60.Cr

In a free-electron laser (FEL), a relativistic electron
beam oscillates as it travels through a spatially periodic
magnetic undulator. The electron beam oscillations
create and amplify light whose wavelength is determined
by the electron beam energy and undulator field struc-
ture. The optical frequency can be tuned by adjusting the
energy of the electron beam. In a FEL oscillator, the op-
tical pulse evolves through mode competition as a result
of losses at the mirrors and wavelength dependent
amplification by the electron beam. The characteristic
time observed for the wavelength change determines the
optical response to an electron beam energy change.

The ability of the FEL to change the optical frequency
rapidly has been demonstrated experimentally [1] and
theoretically [2,3]. Of similar interest is the ability to sta-
bilize the optical frequency through feedback [4] where
the optical frequency is monitored and fluctuations are
corrected through a feedback loop that adjusts the elec-
tron energy accordingly. Experimental work focusing on
wavelength shifting has also been performed where the
results were related to a simple analytical model [5]. For
FEL applications, it is important to understand the na-
ture of the time response and how the FEL changes its
frequency.

Simulations use FEL theory based on a self-consistent
solution to the coupled Maxwell-Lorentz equations [6]
describing the evolution of the optical pulse in a FEL os-
cillator over many passes [7]. Transverse effects are
neglected to focus on the more important longitudinal
behavior. The simulations examine the characteristic
time scale of the optical response as a function of the
gain, resonator loss, electron pulse length, desynchron-
ism, and electron beam energy shift.

I. FEL THEORY WITH DIMENSIONLESS
PARAMETERS

A self-consistent FEL theory couples single-particle
electron dynamics following the Lorentz force equations
with a wave equation derived from Maxwell’s equations
[6]. Dimensionless parameters [7] can be used to simplify
the description of the interaction between the electron
beam and the optical wave. A carrier wavelength A with
a slowly varying complex amplitude and phase represents
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the optical field. The interaction is assumed to be near
resonance where an electron passes through one period of
the undulator as one wavelength of light passes over the
electron. The interaction with the optical field causes
bunching of the electrons in the longitudinal direction
which is necessary to coherently amplify the optical
wave. The electron phase {=(k+ky)z—wt can be
defined to follow the microscopic longitudinal evolution
of an electron relative to the optical wave, where z is
oriented along the propagation direction, w=2mc /A is
the optical frequency, k =27 /A, ko=2m /Ay, A is the un-
dulator wavelength, and c is the speed of light. The cor-
responding electron phase velocity is given by

v=i§—=L[(k +ko)B,—k], (1)
dr

for electrons with velocity f3,c¢ in the z direction in an un-
dulator with N periods and length L =NA,. The dimen-
sionless time 7=ct /L is measured from 7=0 at the be-
ginning of the undulator to 7=1 at the end of the undula-
tor. Within the optical field envelope, longitudinal dis-
tances are normalized to the “slippage length” NA, the
distance that an electron traveling at speed S,c falls
behind light traveling at speed ¢ during one pass through
the undulator [7]. The equations of motion for an elec-
tron can be reduced to the pendulum equation [8]

@ﬂa |cos(&, 4+ ) )

d T2 z z+T z/
following electron phases at position z + 7 in the presence
of the complex dimensionless optical field

a=4mNeK [Jo(£)—J,(E)]LEe'® /y*mc? where e is the
electron charge magnitude, ¥y =(1—p2—pB2)"!/2 is the
relativistic Lorentz factor, B c is the transverse electron
velocity, and ¢ is the optical phase. The optical field in
(), la,le'®, is evaluated at position z. The subscript
z +7 accounts for the slippage of the electron pulse as it
falls behind the optical field, a,= Iazle'¢z, at position z.
The Bessel functions J, and J,, with argument
E=K?[2(1+K?)], describe the reduced coupling in a
linearly polarized undulator [9]. The undulator parame-
ter is K =eBA,/2mmc? where B is the root-mean-squared
undulator field strength and m is the electron mass. Us-
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ing Maxwell’s wave equation and the slowly varying am-
plitude and phase approximation, the evolution of the
complex optical field amplitude is described by [7]

da, .
oy e s 3)
where the dimensionless current density is

J=8N{emK[Jo(&)—J (§)IL}?*pF /y*mc? and p is the
electron beam particle density. The transverse coupling
is described by the filling factor F=7r2/7w} where r,, is
the electron beam radius and wy is the optical mode ra-
dius [7]. The average { ) over the individual sample elec-
trons determines their contribution to the current density
driving the optical wave. The longitudinal macroscopic
electron pulse profile is assumed to be parabolic,
j(z2)=jo(1—2z%/0%), with pulse length o, and peak
current j,. The macroscopic electron pulse shape j(z)
typically does not change due to microscopic bunching.

In the simulations, the optical wave and electron beam
are represented by a large number of sites along the longi-
tudinal z axis. Each electron site contains electrons uni-
formly distributed in phase at the start of each pass. As
the electrons slip back through the slippage distance NA,
the coupled equations (2) and (3) are solved numerically.

At the beginning of each pass, the dimensionless
desynchronism d, normalized to the slippage distance
NA, is added to shift the optical pulse with respect to the
electron pulse. A small value of desynchronism is neces-
sary for the development of a steady-state optical pulse
[7]. On each pass, the optical pulse requires a finite time
to bunch the electrons. As the bunched electrons slip
back across the optical pulse each pass, they preferential-
ly amplify its trailing edge and distort the optical pulse.
Over many passes, this distortion causes the optical pulse
centroid to move back away from the electrons and de-
cay. The loss per pass is given by the resonator quality
factor @, so that the optical field decays as
|a|?* < exp(—n /Q) when the gain is zero [7].

The electron phase velocity v describes changes in ei-
ther the optical wavelength or the electron beam energy.
At resonance, v=0, the optical wavelength is determined
by the resonance condition A=Ay(1—p,)=Ay(1+K?2)/y?
when y >>1. From (1) and holding A constant, a change
in the electron beam energy by Aymc? away from reso-
nance results in a phase velocity change of
Av=47NAy /y. Therefore, a change in electron phase
velocity Av is directly proportional to a small change in
electron beam energy.

The phase velocity also can be used to measure
changes in the optical wavelength. The optical spectrum
is comprised of a large number of modes, each mode
represented by a phase velocity, v(k)=L[(k +k,)B,
—k], where k =27 /A is the mode wave number. A
change of Ak, or AA, results in a change in the phase ve-
locity of Av=—27NAk/k=27wNAMA/A, so that a small
change in v is directly proportional to a small change op-
tical wavelength A. In order for the FEL to maintain res-
onance, a shift in Av in the initial electron phase velocity
due to a change of initial electron energy leads to a shift
of —Awv in the optical spectrum.

II. OPTICAL PULSE EVOLUTION

Figure 1 shows the evolution of the longitudinal optical
pulse shape and power spectrum resulting from a simula-
tion. The parameters j,=1, @Q=50, 0,=2, and
d=0.03 are chosen so that the optical pulse reaches
steady-state saturation at field strengths that do not lead
to the trapped-particle instability and the growth of opti-
cal sidebands [10]. Across the top three frames of Fig. 1,
the steady-state optical pulse is shown after » =500
passes. The sequence of four rows of frames below this
set shows the evolution at increments of 50 passes after a
step change of the electron phase velocity by Avy=m/2.
The shift of IAvol =1 /2 in this simulation is within the
gain bandwidth of a normal FEL. The left frames display
the optical pulse amplitude |a(z)| as a function of the di-
mensionless longitudinal position z. The peak value of
the dimensionless field is |a|=13 at 500 passes, and the
frames below are in the same scale as the top frame. The
bottom left frame shows the relative position of the elec-
tron pulse slipping back across the optical pulse from the
beginning of the undulator (7=0) in black to the end of
the undulator (7=1) in grey. The desynchronism value
of d =0.03 results in the optical pulse arriving ahead of
the electron pulse at each pass. The loss due to a finite
Q=50 provides for an exponentially decaying profile
along the leading edge of the optical pulse where there is
no gain. The step change in initial phase velocity modu-
lates the pulse structure in the interaction region. After
550 passes, a small amplitude rise due to this modulation
begins to travel across the longitudinal profile due to
desynchronism d each pass. A separation occurs between
the light at the initial frequency in front of this rise and
the light of a new frequency behind it.

The center frames display the evolution of the optical
power spectrum P(v,n). The horizontal axis for the opti-
cal spectrum is directly proportional to a change in wave-
length according to Av=27NAA/A. A triangular grey
marker on the bottom of each frame marks the new shift-
ed electron phase velocity at the beginning of each -pass.
The electron beam energy is initially at resonance, v,=0,

P(v,n) do¢(z,n)/dz
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FIG. 1. Optical pulse evolution for j,=1,Q0=50, d =0.03,
and o, =2 following a step change in the electron energy.
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at the beginning of each pass up to pass n=>500. The
centroid of the optical spectrum is represented by a rec-
tangular black marker at the top of each frame. The op-
tical spectrum centered initially on resonance at the be-
ginning of the simulation, n =0, has shifted in the steady
state to v(k)=3 through mode competition and satura-
tion prior to pass n =500 [6]. The weak field gain spec-
trum G (v) is shown below the optical spectra for refer-
ence and can be used to expiain this shift. The gain spec-
trum shows that at resonance net single-mode gain does
not occur, while a shift of the electron energy off reso-
nance with optical wave of v;=2.6 results in peak
single-mode gain G =0.135j=0.135 for weak fields
(la] <<). In strong fields at saturation, the peak gain
moves to higher values of v and determines the location
of the observed steady state of the optical spectrum at
pass n=>500. The change in electron beam energy
Aymc? corresponds to a shift in phase velocity
Av=47NAy /y. The optical spectrum centroid indicat-
ed by the rectangular marker at the top of the frame be-
gins to shift to the left toward smaller wavelengths as the
spectrum broadens at n =550 passes. A well-defined
peak develops at the new frequency after n =650 passes
and grows to its steady-state value by 700 passes. For
Av=1.5 there is a fractional decrease of the optical
wavelength AA/A=Av/27N=0.25% after n =500
passes for N =100. The increase in initial electron beam
energy leads to a decrease in optical wavelength.

The right frames represent the change in the slope of
the optical phase, d ¢ /dz, along the longitudinal pulse po-
sition. The variation of the optical phase ¢ describes fre-
quency components around the carrier wavelength A. An
optical wave with dependence of the form
expli(kz —wt +¢)] has an effective wave number modify-
ing the phase velocity, k —k +d¢/dz. The change from
the initial phase velocity v, is Av=—d¢/dz. To the left
of the electron pulse, the optical phase slope has its origi-
nal value d¢/dz=0. To the right of the electron pulse at
500 passes, the slope is d¢/dz=~ —3, representing the
change in the optical phases that shifts the optical fre-
quency from its initial value to reach steady state. The
change in the shape of the complex optical field envelope
determines the wavelength shift, from the fundamental
carrier wavelength. In the interaction region, d¢/dz is
not constant and gives a frequency chirp to the optical
spectrum. The plot of d¢/dz shows an increase in the
optical frequency from the back to the front of the pulse.
After n =550 passes, d¢/dz has increased in the region
of interaction. After n =600 passes, the new frequency
begins to grow to the left of the electron pulse and fol-
lows the motion of the rise in the field magnitude |a(z)|.

The power P(n)=|a(n)|? integrated over the length of
the pulse is shown in the lower right plot. The power in-
creases when the width of the optical spectrum broadens
at 550 passes and then returns to its steady-state value.
This is a result of the choice of operating parameters.
Other parameters can lead to a decrease in power.

Figure 2(a) shows the response in the centroid of the
optical spectrum to the electron energy step in the stimu-
lation of Fig. 1. The vertical axis is the absolute value of
Av measuring changes in both the phase velocity of the

electrons and the centroid of the optical spectrum. The
shape of the curve is approximately an exponential rise of
—(n—ny)/n .

the form Ave<1l—e 07", where ng is the pass num-
ber at which the energy step is applied and n, is the
characteristic number of passes for the optical spectrum
centroid to reach 1/e of the new steady-state value. For
a sudden energy step, the characteristic response times is
n.=90. The time for light of the initial frequency to de-
cay is on the order of Q, or about 50 passes, and is in
rough agreement with n,. The shape of the response is
not greatly affected by the amplitude and sign of the elec-
tron energy shift for values in this range and these
operating parameters. For a larger energy shift where
the electrons move outside the gain bandwidth, the shape
of the response is strongly dependent on both the ampli-
tude and sign of the electron beam energy shift [2]. In
this case, the initial fields decay away completely and the
new fields grow from spontaneous emission.

Figure 2(b) shows the response to a linear energy slew
of the electron beam over n, =200 passes for the same
operating parameters as in Fig. 2(a). The slope of the en-
ergy slew is less than the slope of the response in Fig.
2(a). The optical response is driven by the more gradual
change in Av,. The slope of the energy slew and the opti-

Electron Energy Step
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1AV
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FIG. 2. (a) Response of the optical centroid to a step change
in the electron energy, n, =0, with j,=1, @ =50, d=0.03, and
o,=2. (b) Response of the optical centroid to an energy slew
over n, =200 passes with j,=1, Q =50, d=0.03, and o, =2.
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cal response are equal at the center of the phase velocity
change. The response of the optical centroid occurs over
a period characterized by n,. =200 passes. The initial op-
tical response is slower in Fig. 2(a) since the energy shift
is more gradual.

Figure 3 shows the results of a simulation with the
same parameters of the previous figures, but with a
higher value of Q =150. The higher Q requires a longer
time for the optical pulse to reach steady state, so the en-
ergy shift in this simulation occurs after n =1000 passes.
Outside the region of interaction with the electron pulse,
the optical pulse extends over a longer distance due to the
effects of desynchronism and lower resonator loss. Note
that the simulation window width in the longitudinal
direction is twice that in the previous simulation. The
maximum amplitude |a(z)|=16 is larger than in Fig. 1
and the longer optical pulse results in a narrower optical
linewidth for P(v,n). A distinct ‘“bump” is evident in the
longitudinal optical pulse shape where the energy shift
occurs. With large Q, light of the initial frequency does
not decay until about 400 passes after the step in initial
electron energy. The bump that represents the transition
from the initial to the final optical frequencies is a small
portion of the total optical energy leading to two distinct
peaks in the optical spectrum at n =1200 passes. While
the initial peak, which decays with Q, greatly influences
the optical pulse centroid, the peak at the final frequency
grows to a significant value in about 100 passes less than
determined by Q. Light is generated at the final frequen-
cy in less time than determined by Q. From the evolution
of d¢/dz, it is apparent that by n =1100 passes the field
within the interaction region is at the final frequency.

In Fig. 4 the evolution of the optical pulse is shown for
peak current j,=0.4, Q =40, desynchronism d =0.01,
and for a larger electron pulse length of o, =5. A change
in phase velocity Av=/2 is imposed after n=1000
passes. Outside the region of interaction with the elec-
tron pulse, the optical pulse decays rapidly for low Q. In
comparison with the two previous figures, the low Q re-
sults in a narrower pulse despite a larger o, resulting in a
wider optical spectrum P(v,n). The slope of the optical
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FIG. 3. Optical pulse evolution for j,=1, d=0.03, and
o, =2 with large resonator Q =150.
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FIG. 4. Optical pulse evolution for j,=0.4 and o, =5 with
small Q =40 and small desynchronism d =0.01.

phase shows higher frequencies at the front part of the
pulse and lower frequencies in the rear part of the pulse,
as in the previous example. The front of the pulse has
reached the steady pulse shape after 30 passes. The
desynchronism d determines the rate at which optical in-
formation is transferred to the front of the optical pulse.
The time for optical information to be transferred is
o,/d =500 passes, and the optical pulse shape and opti-
cal centroid reach a steady state on this same time scale.

III. TRENDS IN THE OPTICAL RESPONSE

In Fig. 5, the response is plotted for the simulation of
Fig. 4. Even for a small value of Q =40, the characteris-
tic number of passes in n, =450. In the middle portion of
the frequency shift, the optical centroid changes linearly
with the number of passes. The time scale to reach the
new steady-state frequency is on the order of o, /d = 500.
This is the time that information takes to travel across
the optical pulse |a(z)| due to the desynchronism process.

Electron Energy Step
/2= ——
A
1avi Optical Response: nc=435
0.0 — —
1400 n 2990

FIG. 5. Response of the optical centroid to a step change in
the electron energy, n,=0, from Fig. 4 with
jo=0.4, 0=40, d=0.01, and 0,=S5.
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FIG. 6. (a) Characteristic response time n, as a function of
desynchronism d with j,=1.0 and o,=1.8. (b) Characteristic
response time n, as a function of pulse length o, with j,o,=1.8
and d =0.03.

The actual time to reach equilibrium is a function of the
FEL operating parameters. For pulses with o,/d > Q,
increases in current j and decreases in Q are found to
lower the value of n.. For low Q the larger o,/d, the
characteristic response time is dependent on the sign of
the shift in the electron phase velocity.

The optical response time is studied by following the

centroid of the optical spectrum for different values of
0, d, o,, j, and energy step. In Fig. 6(a), the desynch-
ronism is varied from d=0.01 to 0.06 for a family of
curves with Q =20, 50, 100, and 200. The decay time n,
approaches Q for d =0.03. For large Q and small o, /d,
the response is governed by the decay of light at the old
frequency outside the interaction region. For small
Q <50, the transit time o, /d is comparable to the decay
time. For a given value of Q, n,_ is inversely proportional
to o,. The range of the curves displayed have been set so
that fields remain weak where the trapped-particle insta-
bility and limit-cycle behavior do not occur. For j,=1.0
and o,=1.8, the optical pulse overlap results in strong
coupling for values of d <0.02 and Q > 100. Values of
d 2 0.05 results in weak coupling for lower values of Q,
and the pulse decays so that no steady state is reached.

In Fig. 6(b), the electron pulse length o, is varied hold-
ing the product j,o,=1.8 fixed. This holds the total
charge in the electron pulse constant. The desynchron-
ism is chosen to be d =0.03. A family of curves is again
plotted for the same range of Q as in Fig. 6(a). For a
small value of o,, the characteristic number of passes n,
is approximately equal to Q. As the value of o, in-
creases, the time that the modulation travels across the
electron pulse is on the order of o, /d. The increase in n,
with o, /d is within a factor of two of this argument. For
fixed Q, n, is observed to increase linearly with o,.

IV. SUMMARY

The FEL oscillator has been studied using simulations
that follow the evolution of the optical pulse over many
passes. The response of the optical frequency to a change
in the initial electron beam energy depends strongly on
the resonator quality factor Q and the time o, /d for in-
formation exchange over the optical pulse. The resonator
Q determines the optical response time due to the decay
outside the interaction region. Within the interaction re-
gion, the characteristic number of passes required to shift
to a new frequency is approximately o, /d. For small Q,
o,/d is the predominate factor in the optical response.
Even for large Q, o, /d determines the rate at which light
will be generated at the new frequency. These charac-
teristics compare well to previous experimental work [5]
of the FEL wavelength shifting process.
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